Regina Caputo

Physics & Astronomy Department

Stony Brook University

ATLAS Collaboration at the Large Hadron Collider presentation to Borders Science Café January 30, 2011

Physics & Astronomy Department

- Physics Background
- What are Leptoquarks and why are they important?
- How is ATLAS used in a leptoquark search?
- What are the challenges of a leptoquark search?

Physics Background

[1]

Physics Background: the Inner Workings of the Atom

fundamental particles: electron, quark and gluon

gluons carriers of the "strong force"

The Standard Model

Elementary Particles

2 Families of Particles

Force carriers

Electromagnetic

Strong

Weak

Gravity

Physics Background: The Four Forces of Nature

- The Forces (from Thomas' talk)
 - Strong
 - 1 strength with 10⁻¹⁵ m (~nucleus) range
 - Electromagnetic
 - 10⁻³ strength with infinite range
 - Weak
 - 10⁻⁶ strength with 10⁻¹⁸ m (~0.1% dia. proton) range
 - Gravity
 - 10⁻³⁹ strength with infinite range
- Forces represented by a constant that couples to the force
 - dependent on temperature

Physics Background: The Coupling of the Forces

Physics Background: The Coupling of the Forces

- CHALLENGE: So what do we notice about the couplings?
- All the forces seem to come together at a very high temperature (energy)
 - -~10⁻³⁰ seconds after the big bang
- The case for a Grand Unified Theory (GUT)
 - Unifies the forces into one force
 - Lots of other particles result... one of which is a Leptoquark which unifies quarks and leptons

- Physics Background
- What are Leptoquarks and why are they important?
- How is ATLAS used in a leptoquark search?
- What are the challenges of a leptoquark search?

What are Leptoquarks and why are they important?

- What: the hypothetical particle defined
- Why: New physics beyond the standard model
- So How does this happen:
 - Quarks from protons provided by LHC collide
 - Interact via the strong force
 - Leptoquarks are created in pairs
 - Leptoquarks decay

Leptoquark

What are Leptoquarks? A physicist's view

- Physics Background
- What are Leptoquarks and why are they important?
- How is ATLAS used in a leptoquark search?
- What are the challenges of a leptoquark search?

How is ATLAS used in the Leptoquark Search?

To measure neutrinos, need whole detector

Hadronic Calorimeter

- Physics Background
- What are Leptoquarks and why are they important?
- How is ATLAS used in a leptoquark search?
- What are the challenges of a leptoquark search?

What are the challenges of a leptoquark search?

- We predict how leptoquarks decay, but...
 - many known particles decay similarly
 - known particles: higher detection probability
 - Leptoquarks: rare = lower detection probability
- CHALLENGE: find a needle (leptoquark) in a stack of needles

Leptoquark search challenge: the needles

Particle Production	number of events (order of magnitude)
W boson	10,000
Z boson	1,000
top quark	160
Leptoquarks	~1 (we think)

Leptoquark search challenge: ATLAS event display

View from the beam

Leptoquark search challenge: How-to

- Find known particles
 - reject these events
- Search for the unknown at the quantum frontier
- Book: The Quantum Frontier: The Large Hadron Collider
- My leptoquark search at the quantum frontier

Leptoquark search: Computer-simulated events

Leptoquark search: Simulated data results

- Physics Background
 - We've gone from atoms to particles to forces.
- What are Leptoquarks and why are they important?
 - As physicists we're always looking for symmetries with known particles
- How is ATLAS used in a leptoquark search?
 - Different parts of the detector help us find different particles
- What are the challenges of a leptoquark search?
 - We have to understand what we already know to reject it, and then find what we don't.

For more information about physics at the quantum frontier read The Quantum Frontier: The Large Hadron Collider

Questions?

References

- [1] http://sbhep-nt.physics.sunysb.edu/HEP/ AcceleratorGroup/index.html
- [2] J. Pati and A. Salam, Phys. Rev. D10 (1974), 275
- [3] M. Kramer et al., Phys. Rev. D71, 057503 (2005)
- [4] <u>arXiv:0907.1048v2</u> [hep-ex]
- [5] <u>arXiv:hep-ex/0506074v1</u>
- [6] ATLAS TDR, http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ TDR/access.html
- [7] <u>arXiv:1004.5293v2</u> [physics.ins-det]

Physics Background:

The Four Forces of Nature

- Gravity
- Electromagnetic
 - strength and range:
 - 10⁻³ and infinite
 - governs:
 - charged particles
 - holds atoms together
 - force-carrier:
 - photon
- Weak
- Strong

Physics Background:

The Four Forces of Nature

- Gravity
- Electromagnetic
- Weak
- Strong
 - strength and range:
 - 1 and 10⁻¹⁵ m (~nucleus)
 - governs:
 - holds nucleus together
 - color force (unique to quarks)
 - force-carrier:
 - gluon

Physics Background:

The Four Forces of Nature

- Gravity
- Electromagnetic
- Weak
 - strength and range:
 - 10^{-6} and 10^{-18} m (~0.1% diameter of a proton)
 - governs:
 - beta decay (allows p->n... which is how sun burns)
 - mixes quark/lepton flavor
 - force carrier:
 - W/Z bosons
- Strong